Understanding Dimensional Analysis

Step 1: Examine the information given and any units of measurement.

1 foot = 12 inches

1 yard = 3 feet

*1 atm = 101.3 kilopascals 1 mile = 1,760 yards 1 gallon = 4 quarts

 $^{\circ}C = \frac{^{\circ}F - 32}{}$

1.8

*1 pound = 454 grams

1 hour = 60 minutes

K = °C + 273

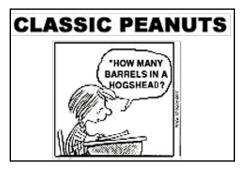
1 mile = 5,280 feet 1 minute = 60 seconds

1 pound = 16 ounces 1 quart = 2 pints

*1 inch = 2.54 centimeters

*1 liter = 1 06 quarts

 $^{\circ}F = 1.8 \,^{\circ}C + 32$


*1 calorie = 4.18 joules

"Base" quantities	Unit
length (1)	meter
mass (m)	kilogram
time (<i>t</i>)	second
electric current (I)	ampere
temperature ("thermodynamic") (T)	kelvin
amount of substance (n)	mole
luminous intensity (Iv)	candela

Step 2: Find appropriate conversion factors that can convert from the units given in the problem to the

Step 3: Start with the information given including the units.

Starting amount	Equal amounts	End Amount
24 inches	1 foot	= 2 feet
	12 inches	

Step 4: Align conversion factors so that the units cancel (top to bottom like common factors in fractions).

Step 5: Multiply the numerators and divide the denominators.

<u>25.0 mL x 1 L</u> = 0.025 L1000 mL 1

arn