

Lateral Area

Total Surface Area

Volume
$L A_{\text {right prism }}=$ perimeter of base \bullet height
$S A_{\text {right prism }}=2 a b+2 a c+2 b c$
$S A_{\text {right prism }}=L A+$ Area of bases
$V_{\text {right prism }}=A_{\text {base }} \bullet h$

Lateral Area

$$
\begin{aligned}
L A_{\text {cylinder }} & =\text { Perimeter of base } \bullet h \\
L A_{\text {cylinder }} & =2 \pi r \bullet h
\end{aligned}
$$

Total Surface Area

Volume

$$
\begin{aligned}
V_{\text {cylinder }} & =A_{\text {base }} \bullet h \\
V_{\text {cylinder }} & =\pi r^{2} \bullet h
\end{aligned}
$$

Sphere

Total Surface Area

Volume

$$
\begin{aligned}
& S A_{\text {sphere }}=4 \pi r^{2} \\
& V_{\text {sphere }}=\frac{4 \pi r^{3}}{3}
\end{aligned}
$$

Lateral Area

$$
L A_{\text {cone }}=\pi r a
$$

Total Surface Area
$S A_{\text {cone }}=\pi r^{2}+\pi r a$

Volume

$$
\begin{aligned}
& V_{\text {cone }}=\frac{\text { Area of base } \bullet h}{3} \\
& V_{\text {cone }}=\frac{\pi r^{2} \bullet h}{3}
\end{aligned}
$$

Lateral Area

$$
L A_{\text {pyramid }}=\frac{\text { Perimeter of base } \bullet a}{2}
$$

Total Surface Area
$S A_{\text {pyramid }}=L A+$ Area of bases

Volume

$$
V_{\text {pyramid }}=\frac{\text { Area of base } \bullet h}{3}
$$

Triangular Prism

Volume

$$
\begin{aligned}
& V_{\text {triangular prism }}=A_{\text {base triangle }} \bullet h \\
& V_{\text {triangular prism }}=\frac{b \bullet h_{\text {triangle }} \bullet h}{2} \bullet h
\end{aligned}
$$

